
课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
大数据技术应用在推荐系统设计中得到了广泛的应用,而今天我们就通过案例分析来了解一下,电商推荐系统都有哪些常见问题。
电商推荐系统的优化往往是多目标的,这个体现在场景和优化时效维度;在不同场景间,推荐系统的目标侧重点也是不一样的,比如有的目标是提高用户在页面的停留时间,有的是提高用户短时间内的消费,比如猜你喜欢、购物车、商品详情页的推荐坑位。
而从优化的时效维度来看,比如从短期来讲,目标有点击率、转化率和客单价等,从长期来讲,目标需要考虑留存、复购等指标。不仅如此,电商平台需要兼顾用户、商家、平台三者的利益,构建长期健康的生态。由于电商业务的购物链路较长,往往用户需要先浏览、点击、加购、下单、支付、履约配送、收货、评价/退货等环节构成,所以推荐系统往往需要将各个环节纳入其中。
当然在其它业务类型的推荐系统中,也存在着链路长的挑战。如招聘行业的推荐系统,给候选人推荐合适工作只是一步,后面还会伴随着长时间的简历投递,招聘人员的审核和邀请,参加面试,终入职或者进行下一家的应聘。社交场景也类似,这种推荐系统存在这双向匹配,比电商平台的单项匹配链路更长,挑战也更大。
对于电商企业来说,数据是核心,是驱动业务迭代的关键点,从用户、商品、商家维度,需要持续积累和采集。从用户的角度,存在浏览、点击、成交、评价、物流全链路闭环数据。从商品角度,有潜力、新品、老品、衰落、下架等信息。从商家角度,也有价值、非价值和灰黑商家等。
希望这辈子,最让你无悔的事情就是来达内学习!学习向来不是件易事,但无论过程多么艰难,希望你依然热爱生活,热爱学习!永远记得,达内将与你一同前行!现在扫码,立即领取万元课程礼包,助力0基础快速入行,为你梳理行业必备技能,全方位了解岗位发展前景!
【免责声明】:本内容转载于网络,转载目的在于传递信息。文章内容为作者个人意见,本平台对文中陈述、观点保持中立,不对所包含内容的准确性、可靠性与完整性提供形式地保证。请读者仅作参考。更多内容请在707945861群中学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。