For investors
股价:
5.36 美元 %For investors
股价:
5.36 美元 %认真做教育 专心促就业
太原达内IT培训课程中,有一门课程是涉及到java大数据的课程,但是有学员反映说,不知道如何将大数据的技术运用到实践,我想这部分同学应该是还没有学到实操的部分就想提前知道一下了。这里我们就用电商平台的数据举例说明一下吧。
第一步:数据收集
如前所述,目前大数据来源非常广泛,常用的收集方法有:百度、搜狗、360和谷歌等搜索引擎的数据检索工具、各类传感器、RFID以及条形码扫描技术等。随着手机和手环电视等智能终端设备的普及、各类应用软件的大量下载使用,数据采集的数量和精度不断提升。
例如:
我在做某范APP的时候,一方面从用户打开APP的时候就开始收集用户的数据在得到用户允许的情况下读取用户的通讯录、然后去服务端匹配用户的信息、再后进行用户名、身份证、与手机号的精准匹配、日积月累某范积累了将近2000万用户的精准数据,这些用户打开APP的时候可以实现千人千面。
另外一方面从线下7千家门店收集,从用户进入门店,到用户扫码连接店内WIFI、到用户扫码定制服装、到用户在线支付等均进行收集。
第二步:数据集成
数据集成阶段的主要任务是对数据采用合适的方法进行适当的处理,去噪和进一步的集成存储。
由于数据来源广泛,注定了大数据的多样性特征(即Varicty),这就决定了如果这些数据不经过初步处理,进行高质量的数据分析将会非常困难。因此,在采集数据后,一般还要进行数据处理与集成将这些多样化的数据转换为便于处理的较为单一结构的数据。当然,并不是所有数据都是有效的和相关性高的,这些数据还需要“去噪”,才能保证数据的有效性和可靠度。
例如:某范的线下商场,有部分客户去商场的时间就5-15分钟,而且没有产生购买行为,那么这些客户去干啥了呢。经过大数据分析,这个客户直奔WC了。因为我们在WC旁专设了一个WIFI连接点。收集到了这些数据接下来可以改善用户商城的购物和不购物体验(品牌印象分增加),因为某范的门店一般开在一地的市中心繁华地段,这个地段很难找到WC,发现这个情况后,某范线下店在寸土寸金的地段都要求配备WC设施以方便用户。这样至少给去WC路上两旁的商品带来多曝光的机会。
第三步:数据分析
大数据预测模型最核心的一步就是数据分析,因为凌乱的数据是没有价值的,只有通过数据分析步骤,才能挖掘到大数据的真正价值。在数据分析阶段,根据不同的应用需求,数据分析各有不同,常用的方法有数据挖掘、机器学习、智能算法、统计分析等,其中数据分析关键的一点是设定核心任务。
在数据分析方面,Google公司无疑是做得最先进的一个,其于2006年率先提出了“云计算”的概念,其内部各种数据的应用都是依托Google自己内部研发的一系列云计算技术,例如:分布式文件系统DFS、分布式数据库BigTable、批处理技术MapReduce,以及开源实现平台Hadoop等,这些技术平台的产生,提供了对大数据进行处理、分析的很好的手段。
第四步:数据解释
从数据的质量来说,数据的处理与分析过程是保证最终数据高质量的关键步骤,但对于最终的数据用户而言,如何获得直观的和有用的数据才是其最关心的。因此,如何通过数据解释步骤,对大数据分析结果进行解释与展示也非常重要。
随着数据量的变大以及对用户数据分析维度的增加,传统的以文本形式输出的数据展示方式已不能满足数据用户的需求,一种被称为“数据可视化技术”数据展示方式开始出现,常见的方式有基于集合的可视化技术、基于图标的可视化技术、基于图像的可视化技术等,在数据可视化技术的帮助下,用户可以很形象的获得数据分析结果,对结果的理解和接受也更直观。
达内时代科技集团致力于培养面向电信和金融领域Java、C++、C#/.Net、3G/Android、3G/IOS、PHP、嵌入式、软件测试、UID、网络营销、网络工程、会计、UED、web、Unity3D、大数据、童程童美等17大方向中高端软件人才课程与少儿教育课程。选择太原达内培训,不再孤军奋战,轻轻松松做IT高薪白领。太原达内培训带领有明确目标的学子迈向成功之路!想找工作的求职者可以加QQ:3373924515(太原达内就业服务部)咨询了解。