
课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
随着互联网的不断发展,越来越多的企业和用户都开始关注互联网网络数据安全领域发生的一些变化,而本文我们就简单来了解一下,数据安全治理基础知识分享。
1、数据安全治理概念
数据安全治理是以“让数据使用更安全”为目的,在中国易于落地的数据安全建设的体系化方法论,核心内容包括:
(1)满足数据安全保护(Protection)、合规性(Compliance)、敏感数据管理(Sensitive)三个需求目标;
(2)核心理念包括:分类分级(Classfiying)、角色授权(Privilege)、场景化安全(Scene);
(3)数据安全治理的建设步骤包括:组织构建、资产梳理、策略制定、过程控制、行为稽核和持续改善;
(4)核心实现框架为数据安全人员组织(Person)、数据安全使用的策略和流程(Policy&Process)、数据安全技术支撑(Technology)三大部分。
2、数据安全治理的核心理念:
分类分级
数据资产保护的核心在于数据分类分级。
通过对数据的有效理解和分析,对数据进行不同类别和密级的划分;根据数据的类别和密级制定不同的管理和使用原则,尽可能对数据做到有差别和针对性的防护,实现在适当安全保护下的数据自由流动。
角色授权
数据安全访问控制核心在于数据访问主体的角色授权。
在数据分级和分类后,明确了数据的访问角色以及数据的使用方式,在不影响数据资源正常访问的前提下,针对不同的角色赋予不同的访问权限,实现数据的访问和使用安全。
场景化安全
数据安全治理的核心在于场景化安全。
不同用户基于业务、访问途径、使用需求,会产生不同的使用场景。在保证数据被正常使用的目标下,基于不同的使用场景制定相应的数据安全策略。场景化的数据安全治理,能及时发现数据风险暴露面,使数据安全治理更具针对性,从而实现数据使用更安全。
3、数据安全治理目标
数据安全治理长期目标思短期目标需要从治理体系、安全合规、技术支撑三要素进行考虑建设。
治理体系:数据安全体系化建设,使数据安全管理更加合理规范,良好的可视性运维机制和动态协同能力。
安全合规:充分了解合规及行业要求,建设满足合规性要求同时,需要考虑灵活性、可扩展性及各阶段衔接性。
技术支持:提升事前发现、事中防护、事后审计能力。
4、数据安全治理体系框架
数据安全是数据安全治理的目标对象,参考框架是数据安全治理的参照对象。组织可以通过持续构建参照对象,实现对目标对象的有效管理。
【免责声明】:本内容转载于网络,转载目的在于传递信息。文章内容为作者个人意见,本平台对文中陈述、观点保持中立,不对所包含内容的准确性、可靠性与完整性提供形式地保证。请读者仅作参考。更多内容请加danei0707学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。