课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
我们在前几期的文章中给大家简单介绍了关于数据应用的一些特点等内容,而今天我们就一起来了解一下关于数据平台的架构都有哪些组成结构。
1)统一数据采集平台
统一数据采集平台,既可以支持不同数据源的全量抽取,也可以支持增强抽取。其中对于业务数据库的增量抽取会选择读取数据库日志,以减少对业务库的读取压力。平台还可以对抽取的数据进行统一处理,然后以统一格式发布到数据总线上。这里我们选择一种自定义的标准化统一消息格式UMS(Unified Message Schema)做为统一数据采集平台和统一流式处理平台之间的数据层面协议。
UMS自带Namespace信息和Schema信息,这是一种自定位自解释消息协议格式,这样做的好处是:
整个架构无需依赖外部元数据管理平台;
消息和物理媒介解耦(这里物理媒介指如Kafka的Topic, Spark Streaming的Stream等),因此可以通过物理媒介支持多消息流并行,和消息流的自由漂移。
平台也支持多租户体系,和配置化简单处理清洗能力。
2)统一流式处理平台
统一流式处理平台,会消费来自数据总线上的消息,可以支持UMS协议消息,也可以支持普通JSON格式消息。同时,平台还支持以下能力:
支持可视化/配置化/SQL化方式降低流式逻辑开发/部署/管理门槛
支持配置化方式幂等落入多个异构目标库以确保数据的终一致性
支持多租户体系,做到项目级的计算资源/表资源/用户资源等隔离
3)统一计算服务平台
统一计算服务平台,是一种数据虚拟化/数据联邦的实现。平台对内支持多异构数据源的下推计算和拉取混算,也支持对外的统一服务接口(JDBC/REST)和统一查询语言(SQL)。由于平台可以统一收口服务,因此可以基于平台打造统一元数据管理/数据质量管理/数据安全审计/数据安全策略等模块。平台也支持多租户体系。
4)统一数据可视化平台
统一数据可视化平台,加上多租户和完善的用户体系/权限体系,可以支持跨部门数据从业人员的分工协作能力,让用户在可视化环境下,通过紧密合作的方式,更能发挥各自所长来完成数据平台后十公里的应用。
【免责声明】本文系本网编辑部分转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与管理员联系,我们会予以更改或删除相关文章,以保证您的权益!