课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
一份完整的产品报告是必须包含产品数据分析等内容的。今天我们就一起来了解一下,哲学数据分析的内容都需要经过哪些步骤才能够产生。
1.数据的获取
数据的来源比较多,需要根据不同指标的需要,选取稳定可靠的数据来源。
常见的数据来源包括:
公司自有数据统计系统;
三方数据统计平台,例如:友盟、百度等;
三方业务平台,例如:广告联盟等;
公开的数据源。
其中有很多数据是有多个来源的,例如:用户的基础数据一般公司自行统计和三方平台都有,而对外合作的数据则是自行统计和三方业务平台都有。
对于和钱有关的数据,例如:订单数、金额明细等,一般来说必须要有严格的对账系统来核对和平账。
但对于用户数据出现差异,一般需要对统计口径和统计方案进行分析,如果是统计手段层面造成的差异则可以忽略。
这里需要注意的是,如果一个数据来源出现大幅异常波动,往往可以借助另一个数据来源进行对比分析,如果两边是同方向、同幅度的波动,则要从业务角度去分析,如果两边差异很大,则很可能是数据统计源头出了问题。
2.数据的整理、清洗
数据的整理和清洗主要是排除脏数据和统计异常的数据、对数据进行结构化处理等等,这里就不展开了。
3.分析数据:重要的是思维
对于数据分析,思维比工具和手段重要,先要明确想找到什么问题,再提出假说然后依据假说去排查,而不是在海量数据中无目的查找问题。
分析的步骤,我认为个家的总结已经非常到位,这里罗列如下,有兴趣的可以读下《数据分析能力的核心是思维》一文详细了解。
4.分析数据的方法
拆解法:
对一个大问题拆分为更小粒度的指标,如果没有发现问题则继续往下拆解,直到发现问题所在为止,从而寻找到对应的解决方案。
BCG矩阵:
根据不同业务场景,选取两个坐标作为坐标轴,从而把业务或用户划分为不同的类型进行分析。
同比分析法:
将各个业务相同类型的数据放在一起比较。
用户分析:
用户分析包括了使用广度、使用深度、使用粘性等指标,这些指标一般是若干用户指标的组合,例如:使用广度就包含了总用户数和MAU等,使用深度就包含了使用时常、停留时间等。
分析数据的方法有很多种,需要根据报告定位和目标的需要适当选取。
作者:Alex
节选:人人都是产品经理
【免责声明】:本内容转载于网络,转载目的在于传递信息。文章内容为作者个人意见,本平台对文中陈述、观点保持中立,不对所包含内容的准确性、可靠性与完整性提供形式地保证。请读者仅作参考。