
课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
我们在浏览网页和使用许多软件的时候,总会发现系统会给我们推荐许多东西和内容,而且是我们暂时比较感兴趣的内容。这种推荐行为是如何发生的呢?下面,我们就请太原电脑培训的老师来给大家讲解一下,在网页上的推荐功能的识别与计算方法。当然了,如果您想了解这些功能的详细开发和操作方法的话,欢迎与我们的在线咨询老师联系。
下面,我们就开始今天的主要内容吧。一般来说,网络的推荐主要是有以下几种模式的。
1 关联性推荐优于因果性推荐
先解释一下两个指标的含义:
关联性推荐是指用户本身存在某个诉求,通过捕捉到该需求,并向用户推荐相应的商户。关联性推荐进一步分为两类:
通过更便捷的路径来满足既存需求,比如识别到用户已经在某个商户,推荐系统将该商户置顶,并且显示可用优惠,缩短用户出大路径。
将用户打断的需求重新捡起来,例如用户近期搜索了“火锅”,但是并没有形成交易,那么推荐系统为用户推荐火锅的商户。
因果性推荐是指用户本身没有明确需求,推荐让用户无中生有的产生新的需求。
在学术界有个争议就是“关联性推荐”到底算不算推荐,因为他满足的是既存需求,严格意义上并没有创新新的需求,我个人的答案是yes,我们逆向来推,如果不做关联性推荐,用户虽然有既存需求,但是很有可能会流失,或者体验上没有这么流畅。所以我觉得不需要纠结在这一点,我们只需要在意用户觉得推荐准不准,用的爽不爽。
关联性推荐实践
1)识别用户所在商户
如果用户连接了wifi,很容易识别到用户所在的商户,然后将该商户置顶,并且外露商户优惠等信息。在所有的推荐策略里,该策略覆盖面随谈小,但是转化率最高。
还有一种方式,就是在商户详情页增加一个功能,就叫“我想去”,用户点击这个按钮之后,一段时间内,这个商户就可以在首页直接推荐,缩短用户查看路径。
2)识别用户意向到店
通过多种行为方式的组合,可以猜测出用户想去的商户。设想如果你要约一个朋友去吃饭,你会怎么筛选商户呢,一般路径都是先搜索看到感兴趣的商户,然后点进去看详情,包括查看地理位置、推荐菜,如果你点击了商户电话、收藏了商户,或者将这家商户分享到微信,那么你要去这间店的概率就更高了,最后再结合你的地理位置变化,就有极高的概率猜测出你要去哪一家店。
3)用户的实时行为
在这里讲述两个概念,用户的长期偏好和实时偏好,我们常说的用户画像一般都是指用户的长期偏好,例如笔者的长期偏好是日料,但是可能因为最近喜欢一个妹子,但是妹子喜欢火锅,所以我的短期偏好就是火锅。而且通过实践证明,用户的偏好是会随时间衰变的,实时偏好的数据更能表征用户当下的需求,推荐效果也更精准。
实时偏好一般可以通过用户的搜索、导航筛选或者用户浏览来推断,倘若用户没有形成交易闭环,比如购买团购、买单、排号等行为,我们可以假设他的需求没有被满足,可能是没找到合适的店,也可能是需求被别的事情打断了,这个时候我们将用户实时偏好的商户推荐给用户转化率往往比较好。
因果性推荐实践
1)协同过滤算法
包含基于商户的协同过滤和基于用户的协同过滤,其实质就是中国人常说的“物以类聚、人以群分”,前者是根据你喜欢的商户,为你推荐类似的商户,后者是先找到与你口味相似的人,然后推荐他们喜欢的商户。有很多文章讲述二者的区别,这里不做展开赘述,唯一强调一点是,二者虽然推荐方式类似,但是推荐结果仅有50%左右是雷同的,因此在实践中不一定非要二选一,可以将两种策略结合使用,效果更好。
2)用户长期偏好
这里的用户偏好是指用户的长期偏好,非实时偏好,识别出用户的长期偏好后,为期推荐相应的商户。
从实践结果来看,关联性推荐>因果性推荐>补余推荐(附近热门、全程热门),而且关联性推荐更容易让用户产生一种“推荐很准”的印象,因此建议构建推荐系统的时候,可以重点考虑关联性推荐。
2 所有的喜欢都是熟悉+意外
在我做推荐之初,一直有个疑惑,就是什么才是好的推荐,当时咨询了很多人,大家分成两派,一派觉得好的推荐,就是向我推荐优质的但是我没去过的商户;另外一派觉得好的推荐就是向我推荐我熟悉的店,因为大家平时去的店相对都是固定的,推荐给我陌生的店,我也没兴趣。
这两种意见都有自己的弊端,推新的内容,用户不理解,势必造成数据效果差,但是总是推用户熟悉的东西,会形成马太效应,越推越窄。
原来好的推荐就是在新奇和熟悉之间寻找一个平衡点,如何寻找这个平衡点呢,有几种方式:
从人出发
统计用户过去常去店铺的重复度,如果重复读很低,说明用户相对更喜欢新奇的商户,这时候增大新商户的占比,反之亦然。
从场景出发
一般情况下工作日大家一般倾向于去近一点、熟悉一点的商户,周末大家倾向于去探索一些新奇的商户。
3 推荐理由是提升用户信任的桥梁
向用户推荐的商户,尤其是对用户来说陌生的商户,推荐理由可以降低用户的理解成本,提高信任感。加了推荐理由点击数据不一定能提升(笔者通过AB测试,数据仅提升1%),但是推荐理由能够提升用户的浏览体验,明白推荐逻辑。
4 推荐的最高境界是让用户产生惊喜
并未刻意寻找的,并未提前期待的,可又是幸运的且意外发现。举两个我碰到的例子,一个是音乐,有一些人可能遇到过这样的一种场景,就是一直听到一首很喜欢的歌,但是就是不知道歌名,然后在网易云音乐听到以后会去评论说我这这首歌好久,终于找到了。网易云音乐专门去挖掘过这样的评论,然后将这些音乐推荐给用户,用户自然就会产生很大惊喜感。另外一个是kindle,一天老大告诉我们,kindle太神奇了,他老婆在读一本书,刚推荐给他,他就发现他的kindle也向他推荐了这本书,我们猜测kindle是通过两人经常在晚上连接相同的wifi来猜测二者的家人关系,然后将一个人喜欢的书推荐给另外一个。
好了,今天就给大家讲这么多吧,喜欢我的内容可以关注或者分享(微信公众平台:tytedu),达内时代科技集团致力于培养面向电信和金融领域Java、C++、C#/.Net、3G/Android、3G/IOS、PHP、嵌入式、软件测试、UID、网络营销、网络工程、会计、UED、web、Unity3D、大数据、童程童美等17大方向中高端软件人才课程与少儿教育课程。选择太原电脑培训,不再孤军奋战,轻轻松松做IT高薪白领。太原达内培训带领有明确目标的学子迈向成功之路!想找工作的求职者可以加QQ:3373924515(太原达内就业服务部)咨询了解。