课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
学习算法是每一位软件开发程序员都需要掌握的一个编程知识点,下面我们就通过案例分析来了解一下,python边缘检测算法都有哪些类型。
1、Sobel算子
Sobel算子检测方法对灰度渐变和噪声较多的图像处理效果较好,sobel算子对边缘定位不是很准确,图像的边缘不止一个像素;当对精度要求不是很高时,是一种较为常用的边缘检测方法。是带有方向的。
2、Canny算子
Canny方法不容易受噪声干扰,能够检测到真正的弱边缘。优点在于,使用两种不同的阈值分别检测强边缘和弱边缘,并且当弱边缘和强边缘相连时,才将弱边缘包含在输出图像中。
Canny边缘检测算法可以分为以下5个步骤:
1)使用高斯滤波器,以平滑图像,滤除噪声。
2)计算图像中每个像素点的梯度强度和方向。
3)应用非极大值(Non-MaximumSuppression)抑制,以消除边缘检测带来的杂散响应。
4)应用双阈值(Double-Threshold)检测来确定真实的和潜在的边缘。
5)通过抑制孤立的弱边缘完成边缘检测。
3、Laplacian算子
Laplacian算子是一种二阶微分算子。对噪声比较敏感,所以很少用该算子检测边缘,而是用来判断边缘像素视为与图像的明区还是暗区。拉普拉斯高斯算子是一种二阶导数算子,将在边缘处产生一个陡峭的零交叉,Laplacian算子是各向同性的,能对任何走向的界线和线条进行锐化,无方向性。这是拉普拉斯算子区别于其他算法的优点。
【免责声明】本文系本网编辑部分转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与管理员联系,我们会予以更改或删除相关文章,以保证您的权益!更多内容请加danei0707学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。