
课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
数据科学家是随着互联网的不断发展而出现的一个岗位需求,今天我们就通过案例分析来了解一下,数据科学家都需要掌握哪些技术。
1.机器学习/神经网络技能
2021年,机器学习方法(如迁移学习和Transformer)将引起很多关注,因为它们正在迅速推动许多不同领域的创新。对于构建和训练神经网络,PyTorch背后有很大的推动力,Keras和TensorFlow也是常用的。还有丰富的软件库生态系统,其中许多是开源的,可以帮助加速机器学习和数据科学应用程序。
2.编程技能
对于数据科学家来说,为探索性分析、数据预处理和算法训练以及在某些情况下在生产中部署模型编写高质量且可维护的代码非常重要。Python、JavaScript、R和Scala是适合开发的语言。另一个有用的技能是了解如何从其他人可以部署的模型构建WebAPI。
3.了解云计算
了解云计算工程原理和云计算基础设施的数据科学家对于雇主来说更具吸引力。这意味着需要三大公有云提供商(微软、AWS、谷歌)提供的云计算服务。每个云计算供应商都为数据科学家提供了一套全面的工具,用于数据提取、数据清理、可视化和机器学习目的。
4.统计数据
统计学是一个数学领域,旨在使用给定数据集的模型和表示来收集和解释定量数据,是数据科学的核心,其中包括概率、可变性、回归和集中趋势等概念。
5.项目管理
由于数据科学项目可能涉及漫长的探索阶段,甚至在后期也存在多个未知因素,因此项目管理是数据科学家需要具备的另一项关键技能。例如采用敏捷方法,可以让数据科学家根据需求和目标确定优先级并创建路线图。
【免责声明】:本内容转载于网络,转载目的在于传递信息。文章内容为作者个人意见,本平台对文中陈述、观点保持中立,不对所包含内容的准确性、可靠性与完整性提供形式地保证。请读者仅作参考。更多内容请在707945861群中学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。