课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
随着大数据技术的不断发展,越来越多的行业都受到了不同程度的影响,而今天我们就通过案例分析来了一下,大数据技术在物联网领域的表现。
1、数据采集与展示
主要是将工业设备传感器上采集到的数据信息传输到云平台,并用可视化的方式将数据呈现出来。
现在的大部分工业设备,例如数控机床、风力发电机、工业车辆等,自身就带有大量传感器,并提供集中的数据接口,只有一小部分老旧设备,或者有特殊的数据需求场景,需要单独加装传感器和数据采集装置。
在数据传输方面,厂房内的设备,环境比较复杂,一般会使用网线将机床设备连接到集中的数据处理装置上,再通过4G或者固网连接到云平台;厂房外的设备,比如工业车辆,则通过内置4G通信模块的终端来完成数据采集和传输。
数据采集业务的难点在于,面对大量不同种类的品牌的工业设备时,设备数据协议的适配和兼容。后的数据可视化,是客户比较核心的需求,可以通过统一的平台监控在网设备的状态,便于及时了解设备异常信息,提高管理人员效率。
2、基础的数据分析与管理
基于云平台采集到的设备数据,进行基本的数据分析,并产生一些SaaS应用,比如设备性能指标异常的告警、故障代码查询、故障原因的关联分析等。
这一层的数据分析还偏向于通用分析工具的阶段,不涉及基于垂直领域深入行业知识的数据分析,基于这些数据分析结果,也会有一些通用的设备管理功能,像设备的开关机、调整状态、远程锁机及解锁等,这些管理应用根据具体的领域需求而不同。
3、深度数据分析与应用
深度的数据分析,则涉及到具体领域的行业知识,需要特定领域的行业专家来实施,具体根据设备的领域和特性建立数据分析模型。
目前比较多应用在故障预测领域,大型工业设备的故障预测一直是难以解决的问题,比如机床、风机等,一旦有大的故障发生,带来的影响以及随后产生的修复成本都是巨大的,实时采集数据并预测设备故障,可以大幅度降低设备故障带来的影响。
在大量数据的基础上,使用机器学习,结合行业专家的知识,可以产生深度的行业应用,比如改进制造工艺,优化制造流程等,可以提高工业设备使用效率。
4、工业控制
工业物联网的目的就是能对工业过程实施精准控制。
基于前述传感器数据的采集、展示、建模、分析、应用等过程,在云端形成决策,并转换成工业设备可以理解的控制指令,对工业设备进行操作,实现工业设备资源之间的精准的信息交互和高效协作。
当前大部分场景的工业控制系统还需要部署在本地,受通信技术和处理能力的限制,工业云平台涉及工业控制的的深度还不够。5G技术可以满足工业系统对通信能力的要求,实现工业控制的目标。
【免责声明】:本内容转载于网络,转载目的在于传递信息。文章内容为作者个人意见,本平台对文中陈述、观点保持中立,不对所包含内容的准确性、可靠性与完整性提供形式地保证。请读者仅作参考。更多内容请在707945861群中学习了解。