课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
随着互联网的不断发展,越来越多的企业和个人用户都开始关注数据隐私问题,而今天我们就一起来了解一下,机器学习环境下的隐私保护问题。
1.信息隐私
信息隐私(Privacy):指的是当一个组织内敏感数据被拥有权限的人员所使用于某些技术、过程(如数据分析、训练模型)时,对数据敏感信息进行保护的过程与规则。
数据的隐私(Privacy)与安全(Security)并不等价:有的时候很多人提到数据隐私时,会与数据安全混为一谈,但其实两者并不等价。数据安全通常指防止数据被非法访问;而数据隐私则一般指在数据被合法访问时,防止其中的敏感信息被访问者以某些方式"逆向"获取,避免因数据被"逆向"推导出而造成的敏感信息泄露和滥用。当然,对于企业来说,数据隐私和数据安全都非常重要。
2.信息隐私问题
如今,在很多需要用到私人敏感数据的领域中,都存在数据隐私的问题。特别地,当机器学习技术应用在一些个人隐私数据上时,可能会暴露敏感数据,对个人造成很多负面影响。
虽然现实生活中有很多数据隐私的问题,但严格意义上,个人隐私不可能被绝对保护。
3.隐私泄露的危害
隐私泄露的危害,主要有:
隐私信息被应用于欺诈与骚扰:如盗刷信用卡、电话诈骗、冒用身份等
用户安全受到威胁:用户信息受到泄露,引起更多有目的犯罪
非法机构利用用户隐私信息操控用户
用户信任危机
违背相关法律
不过一般来说,对于不特别极端的情况,我们仍可以从很大程度上来保证数据在机器学习过程中不被泄露。
【免责声明】:本内容转载于网络,转载目的在于传递信息。文章内容为作者个人意见,本平台对文中陈述、观点保持中立,不对所包含内容的准确性、可靠性与完整性提供形式地保证。请读者仅作参考。