课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
我们在上文中曾经给大家简单的介绍了大数据环境下企业对大数据技术的应用方法和岗位需求等内容,而今天我们就一起来了解一下,合格的数据科学家需要掌握的数据分析技术都有哪些。
1.机器学习
各种机器学习技术的的知识,就好比任何数据科学家的“心脏“一样。很难想象,会有这样的数据科学家,居然没有机器学习方面的知识。大多数公司要求机器学习工程师至少具备3~5年的基础经验,之后,才有资格成为任何组织的数据科学家。
2.统计建模
统计学在数据科学家的工作中起着非常重要的作用。仅仅是编写机器学习算法的代码这一项,你就必须对数据进行更多的分析。后,经过充分预处理的数据可能意味着你的项目已经完成了一半。
你需要对评估矩阵,以及一些参数,如正确率、错误率、精确度、召回率、F1分数和其他术语有一个基本的理解,才能完成你的任务。对概率和统计有着超强理解的人可以像数据科学领域的国王一样统治世界。
3.贝叶斯推断
贝叶斯理论是数据分析领域中重要的理论。数据革命始于贝叶斯理论。掌握贝叶斯理论的基础知识,将会使你在数据科学竞赛中所向披靡,势如破竹。掌握这一理论,你才能够轻松地从其他竞争对手中脱颖而出。
4.有监督学习和无监督学习
如果数据科学家没有监督算法知识,就好比没有球的足球运动员。试想,如果一场足球赛中,球员在没有球的情况下进行比赛,会是什么样子?两个字:愚蠢。同理,如果数据科学家没有掌握有监督算法和无监督算法的知识,也是一样的情景。
有监督算法包括线性回归、逻辑回归、朴素贝叶斯线性判别分析、决策树、K-近邻算法、支持向量机、神经网络(多层感知器)等。
无监督算法包括层次聚类、K-均值、混合模型、DBSCAN、OPTICS算法、主成分分析等等。
5.优化
优化是一项不为多数人所能掌握的技能。这是使你有别于其他开发人员的关键因素。训练模型并不很重要,但是,创建一个优化版本的模型需要进行大量的工作。超参数每天都会让你头疼,如果你对优化有着完美的理解,对你来说,优化就像进行一场没有任何障碍的比赛。因此,要成为一名“英雄“,就要优化你的优化技能。
【免责声明】本文系本网编辑部分转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与管理员联系,我们会予以更改或删除相关文章,以保证您的权益!