课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
我们在上文中给大家简单介绍了大数据平台在发展过程中经常会出现的一些问题,而今天我们就这些问题来给大家分享一个解决方法,下面就一起来就一下具体内容吧。
(1)阶段一:全面梳理企业信息,自动化构建企业的数据资产库
在此阶段,主要是对企业大数据的梳理,从而全面掌握企业大数据的情况,主要有以下三个方面。
梳理全企业数据架构,对企业的数据模型、数据关系、数据处理有清晰化的认识。
对数据资产形成统一的自动化管理,形成企业的元数据库。
对企业数据资产形成多种视图,使数据资产能够让不同用户,有不同视角的展示。
(2)阶段二:建立管理流程,落地数据标准,提升数据质量
在此阶段,需要建立大数据管控能力,包括从业务的角度梳理企业数据质量问题,形成质量控制能力,形成核心数据标准,并抓标准落地。针对关键问题,建立数据的管理流程,少而精,控制核心问题。
在这个阶段主要是为数据部门形成一套管理大数据的能力,同时为数据部门形成数据管理的工作环境。
(3)阶段三:直接为用户提供价值,向用户提供数据微服务
通过前两个阶段,企业能够建立基本的数据治理的能力,在此基础上,还需要以用户为中心,为用户提供直接获取数据的能力。阶段三依赖于前两个阶段能力的建设,在这个阶段的目标是向用户提供自助化的数据服务,使用户能够自助地获取和使用数据,并且在用户的使用过程中再反过去进一步落地标准、控制质量。
(4)阶段四:智能化企业知识图谱,为全企业提供数据价值
这个阶段是将数据沉淀成为知识,形成企业的知识图谱,提供从“关系”的角度去分析问题的能力。
人进行数据搜索是通过业务术语(知识)来搜索的,而知识之间是有相互联系的,例如水果和西红柿是上下位关系(后者是前者的具体体现),好的搜索除了要列出直接结果,还需要显示与之关联的知识,这就要建立知识图谱。
【免责声明】:本内容转载于网络,转载目的在于传递信息。文章内容为作者个人意见,本平台对文中陈述、观点保持中立,不对所包含内容的准确性、可靠性与完整性提供形式地保证。请读者仅作参考。