课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
随着互联网的不断发展,企业通过广告投放来吸引用户需要面临的挑战也在不断的提高。今天我们就一起来了解一下,这些挑战内容都包含了哪些方面。
1. 来自算法和工程的挑战
一方面需要精准的算法模型来提高预估的准确性,另一方面也需要强大的工程架构来提高服务的时效性 & 稳定性。
2. 广告请求到终广告展示之间的效率提升
从广告请求到终广告展示需要经过定向召回 -> 索引截断 -> 粗排 -> 精排等诸多环节,整个链路可以看作一个漏斗模型,只有不断提高各个环节的吞吐量和准确率,才能达到终展示结果收益大化的效果。
只有对每个环节都构建相应的业务指标,实时自动监控指标的变化,及时发现和处理线上问题,同时通过实验不断优化模型,才能在服务性能和准确性方面取得一个平衡。
3. 关于 OCPX 投放模式自我探索
智能化是未来广告投放的趋势,过去很多需要广告主自己完成的工作现在都可以移交给系统自动完成。以当下重点推广的 OCPX 投放模式为例,对广告主来讲,广告投放过程的主要痛点在于出价难、冲量难、转化成本不可控。
OCPX 采用精准的点击率和转化率预估算法,可帮助广告主在获取更多优质流量的同时提高转化率。系统会在广告主出价的基础上,基于海量数据和智能算法动态调整出价,进而优化广告主排序,帮助广告主获得合适的流量,从而降低转化成本。OCPX 投放模式对算法的准确性和时效性要求都非常高,为了提高模型时效性,可以基于 Spark Streaming & FTRL 进行模型在线学习;为了提升模型的准确性,可以采用迁移学习的方法,来解决广告转化路径靠后的转化类型样本稀疏的问题。
【免责声明】:本内容转载于网络,转载目的在于传递信息。文章内容为作者个人意见,本平台对文中陈述、观点保持中立,不对所包含内容的准确性、可靠性与完整性提供形式地保证。请读者仅作参考。